
Dynamic Load Balancing of
Parallel Computational Iterative Routines
on Platforms with Memory Heterogeneity

David Clarke, Alexey Lastovetsky, Vladimir Rychkov

School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

David.Clarke.1@ucdconnect.ie, {Alexey.Lastovetsky, vladimir.rychkov}@ucd.ie

Abstract. Traditional load balancing algorithms for data-intensive iterative
routines can successfully load balance relatively small problems. We
demonstrate that they may fail for large problem sizes on computational
clusters with memory heterogeneity. Traditional algorithms use too simplistic
models of processors’ performance which cannot reflect many aspects of
heterogeneity. This paper presents a new dynamic load balancing algorithm
based on the advanced functional performance model. The model consists of
speed functions of problem size, which are built adaptively from a history of
load measurements. Experimental results demonstrate that our algorithm can
successfully balance data-intensive iterative routines on parallel platforms with
memory heterogeneity.

Keywords: iterative algorithms; dedicated heterogeneous platforms; dynamic
load balancing; data partitioning; functional performance models of
heterogeneous processors.

1 Introduction

In this paper we study load balancing of data-intensive parallel iterative routines on
heterogeneous platforms. These routines are characterised by a high data-to-
computation ratio in a single iteration. The computation load of a single iteration can
be broken into any number of equal independent computational units [1]. Each
iteration is dependent on the previous one. The generalised scheme of these routines
can be summarised as follows: (i) data is partitioned over the processors, (ii) at each
iteration some independent calculations are carried out in parallel, and (iii) some data
synchronisation takes place. Typically computational workload is directly
proportional to the size of data. Examples of scientific computational routines include
Jacobi method, mesh-based solvers, signal processing and image processing.

Our target architecture is a dedicated cluster with heterogeneous processors and
heterogeneous distributed memory. High performance of iterative routines on this
platform can be achieved when all processors complete their work within the same
time. This is achieved by partitioning the computational workload and, hence, data

unevenly across all processors. Workload should be distributed with respect to the
processor speed, memory hierarchy and communication network [2]. Load balancing
of parallel applications on heterogeneous platforms has been widely studied for
different types of applications and in various aspects of heterogeneity. Many load
balancing algorithms are not appropriate to either the applications or platforms
considered in this paper. Applicable algorithms use models of processors’
performance which are too simplistic. These traditional algorithms are suitable for
problem sizes, which are small relative to the platform, but can fail for larger
problems.

This paper presents a new dynamic load balancing algorithm for data-intensive
iterative routines on computational clusters with memory heterogeneity. In contrast to
the traditional algorithms, our algorithm is adaptive and takes into account
heterogeneity of processors and memory. Load balancing decisions are based on
functional performance models which are constantly improved with each iteration [3].
Use of the functional performance models remove restrictions on the problem size
which can be computed. This allows a computational scientist to utilise the maximum
available resources on a given cluster. We demonstrate that our algorithm succeeds in
balancing the load even in situations when traditional algorithms fail.

This paper is structured as follows. In Section 2, related work is discussed. In
Section 3, we describe the target class of iterative routines and the traditional load
balancing algorithm. Then we analyse the shortcomings of the traditional algorithm
and present experimental results. In Section 4, we describe our algorithm and
demonstrate that it can successfully balance data-intensive iterative routines with
large problem sizes.

2 Related Work

In this section, we classify load balancing algorithms and discuss their applicability to
data-intensive iterative routines and dedicated computational clusters with memory
heterogeneity.

Load balancing algorithms can be either static or dynamic. Static algorithms [4, 5,
6] use a priori information about the parallel application and platform. This
information can be gathered either at compile-time or run-time. These strategies are
restricted to applications with pre-determined workload and cannot be applied to such
iterative routines as adaptive mesh refinement [7], for which the amount of
computation data grows unpredictably. Dynamic algorithms [8, 9, 10, 11, 12] do not
require a priori information and can be used with a wider class of parallel
applications. In addition, dynamic algorithms can be deployed on non-dedicated
platforms. The algorithm we present in this paper is dynamic.

Another classification is based on how load balancing decisions are made: in a
centralised or non-centralised manner. In non-centralised algorithms [11, 12], load is
migrated locally between neighbouring processors, while in centralised ones [4, 5, 6,
8, 9, 10], load is distributed based on global load information. Non-centralized
algorithms are slower to converge. At the same time, centralized algorithms typically
have higher overhead. Our algorithm belongs to the class of centralised algorithms.

Centralised algorithms can be subdivided into two groups: task queue and
predicting the future [2]. Task queue algorithms [9, 10] distribute tasks. They target
parallel routines consisting of independent tasks and schedule them on shared-
memory platforms. Predicting-the-future algorithms [4, 5, 6, 8] can distribute both
tasks and data by predicting future performance based on past information. They are
suitable for data-intensive iterative routines and any parallel computational platform.

A traditional approach taken for load balancing of data-intensive iterative routines
belongs to static/dynamic centralised predicting-the-future algorithms. In these
traditional algorithms, computation load is evaluated either in the first few iterations
[6] or at each iteration [8] and globally redistributed among the processors. Current
load measurements are used for prediction of future performance. Neither memory
structure nor memory constraints are taken into account. As it will be demonstrated in
Section 3, when applied to large scientific problems and parallel platforms with
memory heterogeneity, this strategy may never balance the load, because it uses
simplistic models of processors’ performance.

It has been shown in [13] that it is more accurate to represent performance as a
function of problem size, which reflects contributions from both processor and
memory. In this paper, we propose a new dynamic load balancing algorithm based on
partial functional performance models of processors [3]. Unlike traditional
algorithms, our algorithm imposes no restriction on problem sizes.

We would also like to mention some advanced load balancing strategies which are
not directly applicable to data-intensive iterative routines on heterogeneous clusters. It
has been shown that the task queue model implemented in [10] can outperform the
model [9] because decisions are based on adaptive speed measurements rather then
single speed measurements. The algorithm presented in this paper also applies an
adaptive performance model, but in such a way that it is applicable to scientific
computational iterative routines.

In this paper, we focus on dynamic load balancing with respect to processor
performance and memory hierarchy, and to this end we do not take into account
communication heterogeneity. Future work could be the development of a hybrid
approach, similar to [5], in which our algorithm is combined with one of the many
existing communication models.

3 Traditional Load Balancing Algorithm of Iterative Routines

Iterative routines have the following structure: with 1 (), 0,1,...k kx f x k+ = = 0x given,
where each kx is an n-dimensional vector, and f is some function from into itself
[12]. The iterative routine can be parallelized on a cluster of p processors by letting

n\

kx and f be partitioned into p block-components. In an iteration, each processor
calculates its assigned elements of 1kx + . Therefore, each iteration is dependent on the
previous one.

The objective of load balancing algorithms for iterative routines is to distribute
computations across a cluster of heterogeneous processors in such a way that all
processors will finish their computation within the same time and thereby minimising

the overall computation time: , 1 ,i jt t i j p≈ ≤ ≤ . The computation is spread across a
cluster of p processors P1,…,Pp such that p n� . Processor Pi contains di elements of

kx and f, such that .
1

p

i
i

n d
=

= ∑
Traditional load balancing algorithms work by measuring the computation time of

one iteration, calculating the new distribution and redistributing the workload, if
ecessary, for the next iteration. The algorithm is as follows: n

Initially. The computation workload is distributed evenly between all processors,

. All processors execute computational units in parallel. 0 /id n p= /n p
At each iteration.
1) The computation execution times for this iteration is measured on

each processor and gathered to the root processor.
1 1(),..., ()k

p pt d t d k

2) If
1 ,

() ()
max

()

k k
i i j j

ki j p
i i

t d t d
t d

ε
≤ ≤

−
≤ then the current distribution is considered balanced

and redistribution is not needed.
3) Otherwise, the root processor calculates the new distribution of computations

 as 1 1
1 ,...,k k

pd d+ + 1

1

/
p

k k
i i

j

d n s s+

=

= × k
j∑ where k

is is the speed of the i'th processor

given by / ()k k k
i i i is d t d= .

4) The new distribution 1
1 ,...,k

pd d+ 1k+
 is broadcast to all processors and where

necessary data is redistributed accordingly.

3.1 Analysis of Traditional Load Balancing

The traditional load balancing algorithm is based on the assumption that the absolute
speed of a processor depends on problem size but the speed is represented by a
constant at each iteration. This is true for small problem sizes as depicted in Fig. 1(a).
The problem is initially divided evenly between two processors for the first iteration
and then redistributed to the optimal distribution in the second iteration.

Consider the situation in which the problem can still fit within the total main
memory of the cluster but the problem size is such that the memory requirement of

 is close to the available memory of one of the processors. In this case paging
can occur. If paging does occur, the traditional load balancing algorithm is no longer
adequate. This is illustrated for two processors in Fig. 1(b, c). Let the real
performance of processors P

/n p

1 and P2 be represented by the speed functions 1()s x and

2 ()s x respectively. Processor P1 is a faster processor but with less main memory than
P2. The speed function drops rapidly at the point where main memory is full and
paging is required. First, n independent units of computations are evenly distributed,

, between the two processors and the speeds of the processors, 0 0
1 2 / 2d d n= = 0 0

1 2,s s ,
are measured. Then at the second iteration the computational units are divided

according to
1 0
1 1
1 0
2 2

d s
d s

= , where 1 1
1 2d d n+ = . Therefore in the second iteration, P1 will

execute less computational units than P2. However P1 will perform much faster and P2
will perform much slower than the model predicts, Fig. 1(b). Moreover the speed of
P2 at the second iteration is slower then P1 at the first iteration.

Based on the speeds of the processors demonstrated at the second iteration, their
constant performance models are changed accordingly, Fig. 1(c), and the

computational units are redistributed again for the third iteration as:
2 1

1
2
2 2

d s
d s

= 1
1

n

, where

. Now the situation is reversed, P2 2
1 2d d+ = 2 performs much faster than P1. This

situation will continue in subsequent iterations with the majority of the computational
units oscillating between processors.

(a)

(b)

(c)

Fig. 1. Predicted results from dynamic load balancing on two processors using constant
performance models. In (a) the problem size is small relative to available main memory and
balance is achieved. In (b, c) the problem size is large and may require paging, the balancing
algorithm causes further unbalance. (b) shows first and second iterations, (c) shows second and
third iterations. Outlined points represent performance predicted by constant performance
model.

3.2 Experimental Results of the Traditional Load Balancing Algorithm

The traditional load balancing algorithm was applied to the Jacobi method, which is
representative of the class of iterative routines we study. The program was tested
successfully on a cluster of 16 processors. For clarity the results presented here are
from two configurations of 4 processors, Table 1. The essential difference is that
cluster 1 has one processor with 256MB RAM and cluster 2 has two processors with
256MB RAM.

Table 1. Specifications of test nodes. Cluster 1 consists of nodes: P1, P3, P4, P5. Cluster 2
consists of nodes: P1, P2, P3, P4.

 P1 P2 P3 P4 P5
Processor 3.6 Xeon 3.0 Xeon 3.4 P4 3.4 Xeon 3.4 Xeon
Ram (MB) 256 256 512 1024 1024

The memory requirement of the partitioned routine is a in d× block of a matrix, three
n dimensional vectors and some additional arrays of size p. For 4 processors with an
even distribution, problem sizes of n=8000 and n=11000 will have a memory
requirement which lies either side of the available memory on the 256MB RAM
machines, and hence will be good values for benchmarking.

 0.11

 0.12

 0.13

 0.14

 0.15

 1 2 3 4 5

T
im

e
(s

)

Iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Iterations

16 16 18 16

(a) Cluster 1 with n = 8000 (b) Cluster 1 with n = 11000

 0.11

 0.12

 0.13

 0.14

 0.15

 1 2 3 4 5

T
im

e
(s

)

Iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Iterations

19 17 18 13 22 14 17 13

(c) Cluster 2 with n = 8000 (d) Cluster 2 with n = 11000
Fig. 2. Time taken for each of the 4 processors to complete their assigned computational units
for each iteration 1,2,3,… . In (a) and (c) the problem fits in main memory the load converges
to a balanced solution. In (b) and (d) paging occurs on some machines and the load remains
unbalanced.

The traditional load balancing algorithm worked efficiently for small problem
sizes, Fig. 2(a, c). For problem sizes sufficiently large to potentially cause paging on
some machines the load balancing algorithm caused divergence as the theory, in
section 2.1, predicted, Fig. 2 (b,d).

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

1st Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

2nd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

3rd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

4th Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

5th Iteration

Fig. 3. Traditional load balancing algorithm for four processors on cluster 2 with n=11000.
Showing initial distribution at n/4 and four subsequent iterations. The x axis represents the
number of rows of the matrix are held in memory, and the number of elements of x' computed
by each processor. The full functional performance models are dotted in to aid visualisation.

A plot of problem size vs. absolute speed can help illustrate why the traditional
load balancing algorithm is failing for large problems. Fig. 3 shows the absolute speed
of each of the processors for the first five iterations. The experimentally built full
functional model for each processor are dotted in to aid visualisation but this
information was not available to the load balancing algorithm. Initially each processor

has n/4 rows of the matrix. In the second iteration, P1 and P2 are given very few rows
as they both performed slowly in the first iteration, however they now compute these
few rows quickly. In the third iteration, P1 is given sufficient rows to cause paging and
hence a cycle of oscillating row allocation ensues.

Since data partitioning is employed in our iterative routine, it is necessary to do
data redistribution with each rebalancing. When the balancing algorithm converges
quickly to an optimum distribution the network load from data redistribution is
acceptable. However as the distribution oscillates not only is the computation time
affected but so too is the network load. On cluster 2 with n=11000 approximately
300MB is been passed back and forth between P1 and P2 with each iteration.

4 Dynamic Load Balancing Based on Accurate Evaluation of
Computation Load and Memory Hierarchy

Our dynamic load balancing algorithm is based on functional performance models
[13], which are application centric and hardware specific. Functional performance
models reflect both processor and memory heterogeneity. In this section, we describe
how the load can be balanced with help of these models.

The functional performance models of the processors are represented by their
speed functions s1(d),…,sp(d), with () / ()i is d d t d= , where is the execution time
for processing of d elements on the processor P

()it d

i. As in traditional algorithms, load
balancing is achieved when , 1 ,i jt t i j p≈ ≤ ≤ . This can be expressed as

1 2

1 1 2 2() () ()
p

p p

dd d
s d s d s d

≈ ≈ ≈… , where 1 2 ... pd d d n+ + + = . These equations can be solved

geometrically by intersection of the speed functions with a line passing through the
origin of the coordinate system (Fig. 4). This approach can be used for static load
balancing.

Fig. 4. Optimal distribution of computational units showing the geometric proportionality of
the number of chunks to the speed of the processor.

Functional performance models are built experimentally. Their accuracy depends
on the number of experimental points. Unfortunately, generating these speed
functions is computationally expensive, especially in the presence of paging. To
create just 20 points of a function in Fig. 3 took approximately 1473seconds, 4 times
longer then the actual calculation with a homogeneous distribution for 20 iterations.
This forbids building full functional performance models at run time. However, in this
paper, we apply partial functional performance models to dynamic load balancing of
iterative routines. The partially built performance models are piecewise linear
approximations of the real speed functions, () ()i is d s d′ ≈ , which estimate the real
functions in detail only in the relevant regions [3]. The low cost of partially building
the models makes it ideal for employment in self-adaptive parallel applications. The
partial models can be built during the execution of the computational iterative routine.

We modified the traditional dynamic load balancing algorithm, presented in
Section 2, using partial speed functions instead of single speed values. The partial
functions ()is d′ are built by adding an experimental point (, after each iteration
of the routine. The more points are added, the closer the partial function approximates
the real speed function in the relevant region. At each iteration, we apply the balance
criteria to find a new distribution

)k k
i id s

1
1 ,...,k

pd d 1k+ + by solving the system of equations:
11 1

1 2
1 1 1+

1 1 2 2() () ()

kk k
p

k k k
p p

dd d
s d s d s d

++ +

+ +≈ ≈ ≈
′ ′ ′

… 1 1 1
1 2 ...k k k

pd d d n+ + +, + + + = . In few iterations, our

algorithm will adaptively converge to the optimal data distribution, since
() ()i is d s d′ → . Let us outline how the partial functions ()is d′ are constructed.

The first iteration. The speed of each processor is calculated as 0 /
(/)i

i

n ps
t n p

= . The

first approximation of the partial speed function, ()is d′ , is created as a constant
0()i is d s′ = , Fig. 5(a).

Subsequent iterations. The speed of each processor is calculated as / ()k k k
i i i is d t d= .

The piecewise linear approximations ()is d′ are improved by adding the points
, Fig. 5(b). Namely, let (,)k k

i id s () ()
1{(,)}j j m

i i jd s = , , be the experimentally
obtained points of

(1) ()m
id < <… id

()is d′ used to build its current piecewise linear approximation,
then
 If , then the line segment (1)k

i id d< (1) (1) (1)(0,) (,)i i is d s→ of the ()is d′ approximation
will be replaced by two connected line segments (0,)) (,)k k

i i
k
is d s→ and

; (1) (1)(,) (,)k k
i i i id s d s→

 If , then the line of this approximation will be
replaced by the line segment and the line ;

()k
i id d> m)

)

)

() () ()(,) (,m m m
i i id s s→ ∞
() ()(,) (,m m k k
i i i id s d s→ (,) (,)k k k

i i id s s→ ∞

 If , the line segment of () (1)j k j
i i id d d +< < () () (1) (1)(,) (,j j j j

i i i id s d s+ +→ ()is d′ will be
replaced by two connected line segments () ()(,) (,)j j k

i i i id s d s→ k and
. (1) (1)(,) (,)k k j j

i i i id s d s+ +→

(a) (b)

Fig. 5. Dynamic load balancing using partial estimation of the functional performance model.

4.1 Experimental Results

For small problem sizes (n = 8000, p = 4), our algorithm performed in much the same
way as the traditional algorithm. For larger problem sizes (n = 11000), our algorithm
was able to successfully balance the computational load within a few iterations (Fig.
6). As in the traditional algorithm, paging also occurred but our algorithm
experimentally fit the problem to the available RAM. Paging at the 8th iteration on P1
demonstrates how the algorithm experimentally finds the memory limit of P1. The 9th
iteration represents a near optimum distribution for the computation on this hardware.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
(s

)

Iterations

16 11 9

Fig. 6. Time taken for each of the 4 processors to complete their task for each iteration. These
results are from the same experiment as fig. 5 with problem size n=11000.

A plot of speed vs. problem size, Fig. 7, shows how the computational distribution
approaches an optimum distribution within 9 iterations. We can see why P1 performs
slowly at the 8th iteration. At the 9th iteration in Fig. 7, we can see that the maximum
performance of processors P1 and P2 has been achieved.

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

1st Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

2nd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

3rd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

7th Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

8th Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
bs

ol
ut

e
sp

ee
d,

 s
(x

)

size of problem, x

9th Iteration

Fig. 7. Experimental results from load balancing using partial estimation of the functional
performance model with n=11000. Showing the 1st, 2nd, 3rd, 7th, 8th and 9th iterations. The line
intersecting the origin represents the optimum solution and points converge towards this line.

5 Conclusion

In this paper, we have shown that traditional dynamic load balancing algorithms can fail for
large problem sizes on parallel platforms with memory heterogeneity. They do not take into
account memory hierarchy and use simplified models of processors’ performance. We have
shown that our dynamic load balancing algorithm, in which performance is represented by a
function of problem size, can be used successfully with any problem size and on a wide class of
heterogeneous platforms.

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant Number 08/IN.1/I2054.

References

1. Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible Load Theory: A New Paradigm for
Load Scheduling in Distributed Systems. Cluster Comput. 6, 7--17 (2003)

2. Cierniak, M., Zaki, M.J., Li, W.: Compile-Time Scheduling Algorithms for Heterogeneous
Network of Workstations. Computer J. 40, 356--372 (1997)

3. Lastovetsky, A., Reddy, R.: Distributed Data Partitioning for Heterogeneous Processors
Based on Partial Estimation of their Functional Performance Models. In: HeteroPar’2009.
LNCS, vol. 6043, pp. 91--101. Springer (2010)

4. Ichikawa, S., Yamashita, S.: Static Load Balancing of Parallel PDE Solver for Distributed
Computing Environment. In: PDCS-2000, pp. 399--405. ISCA (2000)

5. Legrand, A., Renard, H., Robert, Y., Vivien, F.: Mapping and load-balancing iterative
computations. IEEE T. Parall. Distr. 15, 546--558 (2004)

6. Martínez, J.A., Garzón, E.M., Plaza, A., García, I.: Automatic tuning of iterative
computation on heterogeneous multiprocessors with ADITHE. J. Supercomput. (to appear)

7. Li, X.-Y., Teng, S.-H.: Dynamic Load Balancing for Parallel Adaptive Mesh Refinement.
In: IRREGULAR'98, pp. 144--155. Springer (1998)

8. Galindo, I., Almeida, F., Badía-Contelles, J. M.: Dynamic Load Balancing on Dedicated
Heterogeneous Systems. In: EuroPVM/MPI 2008, pp. 64--74. Springer (2008)

9. Hummel, S.F., Schmidt, J., Uma, R. N., Wein, J.: Load-sharing in heterogeneous systems
via weighted factoring. In: SPAA’96, pp. 318--328. ACM (1996)

10. Cariño, R.L., Banicescu, I.: Dynamic load balancing with adaptive factoring methods in
scientific applications. J. Supercomput. 44, 41--63 (2008)

11. Cybenko, G.: Dynamic load balancing for distributed memory multi-processors. J. Parallel
Distr. Com. 7, 279--301 (1989)

12. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Dynamic Load Balancing and Efficient Load
Estimators for Asynchronous Iterative Algorithms. IEEE T. Parall. Distr. 16, 289--299
(2005)

13. Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance Model of
Heterogeneous Processors. Int. J. High Perform. Comput. Appl. 21, 76--90 (2007)

