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Abstract. Traditional load balancing algorithms for data-intensive iterative 
routines can successfully load balance relatively small problems. We 
demonstrate that they may fail for large problem sizes on computational 
clusters with memory heterogeneity. Traditional algorithms use too simplistic 
models of processors’ performance which cannot reflect many aspects of 
heterogeneity. This paper presents a new dynamic load balancing algorithm 
based on the advanced functional performance model. The model consists of 
speed functions of problem size, which are built adaptively from a history of 
load measurements. Experimental results demonstrate that our algorithm can 
successfully balance data-intensive iterative routines on parallel platforms with 
memory heterogeneity.  
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1   Introduction 

In this paper we study load balancing of data-intensive parallel iterative routines on 
heterogeneous platforms. These routines are characterised by a high data-to-
computation ratio in a single iteration. The computation load of a single iteration can 
be broken into any number of equal independent computational units [1]. Each 
iteration is dependent on the previous one. The generalised scheme of these routines 
can be summarised as follows: (i) data is partitioned over the processors, (ii) at each 
iteration some independent calculations are carried out in parallel, and (iii) some data 
synchronisation takes place. Typically computational workload is directly 
proportional to the size of data. Examples of scientific computational routines include 
Jacobi method, mesh-based solvers, signal processing and image processing. 

Our target architecture is a dedicated cluster with heterogeneous processors and 
heterogeneous distributed memory. High performance of iterative routines on this 
platform can be achieved when all processors complete their work within the same 
time. This is achieved by partitioning the computational workload and, hence, data 



unevenly across all processors. Workload should be distributed with respect to the 
processor speed, memory hierarchy and communication network [2]. Load balancing 
of parallel applications on heterogeneous platforms has been widely studied for 
different types of applications and in various aspects of heterogeneity. Many load 
balancing algorithms are not appropriate to either the applications or platforms 
considered in this paper. Applicable algorithms use models of processors’ 
performance which are too simplistic. These traditional algorithms are suitable for 
problem sizes, which are small relative to the platform, but can fail for larger 
problems. 

This paper presents a new dynamic load balancing algorithm for data-intensive 
iterative routines on computational clusters with memory heterogeneity. In contrast to 
the traditional algorithms, our algorithm is adaptive and takes into account 
heterogeneity of processors and memory. Load balancing decisions are based on 
functional performance models which are constantly improved with each iteration [3]. 
Use of the functional performance models remove restrictions on the problem size 
which can be computed. This allows a computational scientist to utilise the maximum 
available resources on a given cluster. We demonstrate that our algorithm succeeds in 
balancing the load even in situations when traditional algorithms fail. 

This paper is structured as follows. In Section 2, related work is discussed. In 
Section 3, we describe the target class of iterative routines and the traditional load 
balancing algorithm. Then we analyse the shortcomings of the traditional algorithm 
and present experimental results. In Section 4, we describe our algorithm and 
demonstrate that it can successfully balance data-intensive iterative routines with 
large problem sizes. 

2   Related Work 

In this section, we classify load balancing algorithms and discuss their applicability to 
data-intensive iterative routines and dedicated computational clusters with memory 
heterogeneity. 

Load balancing algorithms can be either static or dynamic. Static algorithms [4, 5, 
6] use a priori information about the parallel application and platform. This 
information can be gathered either at compile-time or run-time. These strategies are 
restricted to applications with pre-determined workload and cannot be applied to such 
iterative routines as adaptive mesh refinement [7], for which the amount of 
computation data grows unpredictably. Dynamic algorithms [8, 9, 10, 11, 12] do not 
require a priori information and can be used with a wider class of parallel 
applications. In addition, dynamic algorithms can be deployed on non-dedicated 
platforms. The algorithm we present in this paper is dynamic. 

Another classification is based on how load balancing decisions are made: in a 
centralised or non-centralised manner. In non-centralised algorithms [11, 12], load is 
migrated locally between neighbouring processors, while in centralised ones [4, 5, 6, 
8, 9, 10], load is distributed based on global load information. Non-centralized 
algorithms are slower to converge. At the same time, centralized algorithms typically 
have higher overhead. Our algorithm belongs to the class of centralised algorithms. 



Centralised algorithms can be subdivided into two groups: task queue and 
predicting the future [2]. Task queue algorithms [9, 10] distribute tasks. They target 
parallel routines consisting of independent tasks and schedule them on shared-
memory platforms. Predicting-the-future algorithms [4, 5, 6, 8] can distribute both 
tasks and data by predicting future performance based on past information. They are 
suitable for data-intensive iterative routines and any parallel computational platform. 

A traditional approach taken for load balancing of data-intensive iterative routines 
belongs to static/dynamic centralised predicting-the-future algorithms. In these 
traditional algorithms, computation load is evaluated either in the first few iterations 
[6] or at each iteration [8] and globally redistributed among the processors. Current 
load measurements are used for prediction of future performance. Neither memory 
structure nor memory constraints are taken into account. As it will be demonstrated in 
Section 3, when applied to large scientific problems and parallel platforms with 
memory heterogeneity, this strategy may never balance the load, because it uses 
simplistic models of processors’ performance. 

It has been shown in [13] that it is more accurate to represent performance as a 
function of problem size, which reflects contributions from both processor and 
memory. In this paper, we propose a new dynamic load balancing algorithm based on 
partial functional performance models of processors [3]. Unlike traditional 
algorithms, our algorithm imposes no restriction on problem sizes. 

We would also like to mention some advanced load balancing strategies which are 
not directly applicable to data-intensive iterative routines on heterogeneous clusters. It 
has been shown that the task queue model implemented in [10] can outperform the 
model [9] because decisions are based on adaptive speed measurements rather then 
single speed measurements. The algorithm presented in this paper also applies an 
adaptive performance model, but in such a way that it is applicable to scientific 
computational iterative routines.  

In this paper, we focus on dynamic load balancing with respect to processor 
performance and memory hierarchy, and to this end we do not take into account 
communication heterogeneity. Future work could be the development of a hybrid 
approach, similar to [5], in which our algorithm is combined with one of the many 
existing communication models. 

3   Traditional Load Balancing Algorithm of Iterative Routines 

Iterative routines have the following structure: with 1 ( ), 0,1,...k kx f x k+ = = 0x  given, 
where each kx  is an n-dimensional vector, and f is some function from  into itself 
[12]. The iterative routine can be parallelized on a cluster of p processors by letting 

n\

kx  and f be partitioned into p block-components. In an iteration, each processor 
calculates its assigned elements of 1kx + . Therefore, each iteration is dependent on the 
previous one. 

The objective of load balancing algorithms for iterative routines is to distribute 
computations across a cluster of heterogeneous processors in such a way that all 
processors will finish their computation within the same time and thereby minimising 



the overall computation time: ,  1 ,i jt t i j p≈ ≤ ≤ . The computation is spread across a 
cluster of p processors P1,…,Pp such that p n� . Processor Pi contains di elements of 

kx  and f, such that .  
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one iteration, calculating the new distribution and redistributing the workload, if 
ecessary, for the next iteration. The algorithm is as follows: n
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4) The new distribution 1
1 ,...,k

pd d+ 1k+
 is broadcast to all processors and where 

necessary data is redistributed accordingly. 

3.1 Analysis of Traditional Load Balancing 

The traditional load balancing algorithm is based on the assumption that the absolute 
speed of a processor depends on problem size but the speed is represented by a 
constant at each iteration. This is true for small problem sizes as depicted in Fig. 1(a). 
The problem is initially divided evenly between two processors for the first iteration 
and then redistributed to the optimal distribution in the second iteration.  

Consider the situation in which the problem can still fit within the total main 
memory of the cluster but the problem size is such that the memory requirement of 

 is close to the available memory of one of the processors. In this case paging 
can occur. If paging does occur, the traditional load balancing algorithm is no longer 
adequate. This is illustrated for two processors in Fig. 1(b, c). Let the real 
performance of processors P

/n p

1 and P2 be represented by the speed functions 1( )s x  and 

2 ( )s x  respectively. Processor P1 is a faster processor but with less main memory than 
P2. The speed function drops rapidly at the point where main memory is full and 
paging is required. First, n independent units of computations are evenly distributed, 

, between the two processors and the speeds of the processors, 0 0
1 2 / 2d d n= = 0 0

1 2,s s , 
are measured. Then at the second iteration the computational units are divided 



according to 
1 0
1 1
1 0
2 2

d s
d s

= , where 1 1
1 2d d n+ = . Therefore in the second iteration, P1 will 

execute less computational units than P2. However P1 will perform much faster and P2 
will perform much slower than the model predicts, Fig. 1(b). Moreover the speed of 
P2 at the second iteration is slower then P1 at the first iteration.  

Based on the speeds of the processors demonstrated at the second iteration, their 
constant performance models are changed accordingly, Fig. 1(c), and the 

computational units are redistributed again for the third iteration as: 
2 1

1
2
2 2

d s
d s

= 1
1

n

, where 

. Now the situation is reversed, P2 2
1 2d d+ = 2 performs much faster than P1. This 

situation will continue in subsequent iterations with the majority of the computational 
units oscillating between processors. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Predicted results from dynamic load balancing on two processors using constant 
performance models. In (a) the problem size is small relative to available main memory and 
balance is achieved. In (b, c) the problem size is large and may require paging, the balancing 
algorithm causes further unbalance. (b) shows first and second  iterations, (c) shows second and 
third iterations. Outlined points represent performance predicted by constant performance 
model. 



3.2   Experimental Results of the Traditional Load Balancing Algorithm 

The traditional load balancing algorithm was applied to the Jacobi method, which is 
representative of the class of iterative routines we study. The program was tested 
successfully on a cluster of 16 processors. For clarity the results presented here are 
from two configurations of 4 processors, Table 1. The essential difference is that 
cluster 1 has one processor with 256MB RAM and cluster 2 has two processors with 
256MB RAM.  

Table 1. Specifications of test nodes. Cluster 1 consists of nodes: P1, P3, P4, P5. Cluster 2 
consists of nodes: P1, P2, P3, P4. 

 P1 P2 P3 P4 P5
Processor 3.6 Xeon 3.0 Xeon 3.4 P4 3.4 Xeon 3.4 Xeon 
Ram (MB) 256 256 512 1024 1024 

 
The memory requirement of the partitioned routine is a in d×  block of a matrix, three 
n dimensional vectors and some additional arrays of size p. For 4 processors with an 
even distribution, problem sizes of n=8000 and n=11000 will have a memory 
requirement which lies either side of the available memory on the 256MB RAM 
machines, and hence will be good values for benchmarking.  
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(a) Cluster 1 with n = 8000   (b) Cluster 1 with n = 11000 
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(c) Cluster 2 with n = 8000  (d) Cluster 2 with n = 11000 
Fig. 2. Time taken for each of the 4 processors to complete their assigned computational units 
for each iteration 1,2,3,… . In (a) and (c) the problem fits in main memory the load converges 
to a balanced solution. In (b) and (d) paging occurs on some machines and the load remains 
unbalanced.  



The traditional load balancing algorithm worked efficiently for small problem 
sizes, Fig. 2(a, c). For problem sizes sufficiently large to potentially cause paging on 
some machines the load balancing algorithm caused divergence as the theory, in 
section 2.1, predicted, Fig. 2 (b,d).  
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Fig. 3. Traditional load balancing algorithm for four processors on cluster 2 with n=11000. 
Showing initial distribution at n/4 and four subsequent iterations. The x axis represents the 
number of rows of the matrix are held in memory, and the number of elements of x' computed 
by each processor. The full functional performance models are dotted in to aid visualisation. 

A plot of problem size vs. absolute speed can help illustrate why the traditional 
load balancing algorithm is failing for large problems. Fig. 3 shows the absolute speed 
of each of the processors for the first five iterations. The experimentally built full 
functional model for each processor are dotted in to aid visualisation but this 
information was not available to the load balancing algorithm. Initially each processor 



has n/4 rows of the matrix. In the second iteration, P1 and P2 are given very few rows 
as they both performed slowly in the first iteration, however they now compute these 
few rows quickly. In the third iteration, P1 is given sufficient rows to cause paging and 
hence a cycle of oscillating row allocation ensues. 

Since data partitioning is employed in our iterative routine, it is necessary to do 
data redistribution with each rebalancing. When the balancing algorithm converges 
quickly to an optimum distribution the network load from data redistribution is 
acceptable. However as the distribution oscillates not only is the computation time 
affected but so too is the network load. On cluster 2 with n=11000 approximately 
300MB is been passed back and forth between P1 and P2 with each iteration. 

4   Dynamic Load Balancing Based on Accurate Evaluation of 
Computation Load and Memory Hierarchy 

Our dynamic load balancing algorithm is based on functional performance models 
[13], which are application centric and hardware specific. Functional performance 
models reflect both processor and memory heterogeneity. In this section, we describe 
how the load can be balanced with help of these models. 

The functional performance models of the processors are represented by their 
speed functions s1(d),…,sp(d), with ( ) / ( )i is d d t d= , where is the execution time 
for processing of d elements on the processor P

( )it d

i. As in traditional algorithms, load 
balancing is achieved when ,  1 ,i jt t i j p≈ ≤ ≤ . This can be expressed as 

1 2

1 1 2 2( ) ( ) ( )
p

p p

dd d
s d s d s d

≈ ≈ ≈… , where 1 2 ... pd d d n+ + + = . These equations can be solved 

geometrically by intersection of the speed functions with a line passing through the 
origin of the coordinate system (Fig. 4). This approach can be used for static load 
balancing. 

 
Fig. 4. Optimal distribution of computational units showing the geometric proportionality of 
the number of chunks to the speed of the processor.  



Functional performance models are built experimentally. Their accuracy depends 
on the number of experimental points. Unfortunately, generating these speed 
functions is computationally expensive, especially in the presence of paging. To 
create just 20 points of a function in Fig. 3 took approximately 1473seconds, 4 times 
longer then the actual calculation with a homogeneous distribution for 20 iterations. 
This forbids building full functional performance models at run time. However, in this 
paper, we apply partial functional performance models to dynamic load balancing of 
iterative routines. The partially built performance models are piecewise linear 
approximations of the real speed functions, ( ) ( )i is d s d′ ≈ , which estimate the real 
functions in detail only in the relevant regions [3]. The low cost of partially building 
the models makes it ideal for employment in self-adaptive parallel applications. The 
partial models can be built during the execution of the computational iterative routine. 

We modified the traditional dynamic load balancing algorithm, presented in 
Section 2, using partial speed functions instead of single speed values. The partial 
functions ( )is d′  are built by adding an experimental point ( ,  after each iteration 
of the routine. The more points are added, the closer the partial function approximates 
the real speed function in the relevant region. At each iteration, we apply the balance 
criteria to find a new distribution 
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algorithm will adaptively converge to the optimal data distribution, since 
( ) ( )i is d s d′ → . Let us outline how the partial functions ( )is d′  are constructed. 

The first iteration. The speed of each processor is calculated as 0 /
( / )i

i

n ps
t n p

= . The 

first approximation of the partial speed function, ( )is d′ , is created as a constant 
0( )i is d s′ = , Fig. 5(a). 

Subsequent iterations. The speed of each processor is calculated as / ( )k k k
i i i is d t d= . 

The piecewise linear approximations ( )is d′  are improved by adding the points 
, Fig. 5(b). Namely, let ( , )k k
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(a)     (b) 

Fig. 5. Dynamic load balancing using partial estimation of the functional performance model.  

4.1 Experimental Results 

For small problem sizes (n = 8000, p = 4), our algorithm performed in much the same 
way as the traditional algorithm. For larger problem sizes (n = 11000), our algorithm 
was able to successfully balance the computational load within a few iterations (Fig. 
6). As in the traditional algorithm, paging also occurred but our algorithm 
experimentally fit the problem to the available RAM. Paging at the 8th iteration on P1 
demonstrates how the algorithm experimentally finds the memory limit of P1. The 9th 
iteration represents a near optimum distribution for the computation on this hardware.  
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Fig. 6. Time taken for each of the 4 processors to complete their task for each iteration. These 
results are from the same experiment as fig. 5 with problem size n=11000.  

A plot of speed vs. problem size, Fig. 7, shows how the computational distribution 
approaches an optimum distribution within 9 iterations. We can see why P1 performs 
slowly at the 8th iteration. At the 9th iteration in Fig. 7, we can see that the maximum 
performance of processors P1 and P2 has been achieved. 
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Fig. 7. Experimental results from load balancing using partial estimation of the functional 
performance model with n=11000. Showing the 1st, 2nd, 3rd, 7th, 8th and 9th iterations. The line 
intersecting the origin represents the optimum solution and points converge towards this line. 

5   Conclusion 

In this paper, we have shown that traditional dynamic load balancing algorithms can fail for 
large problem sizes on parallel platforms with memory heterogeneity. They do not take into 
account memory hierarchy and use simplified models of processors’ performance. We have 
shown that our dynamic load balancing algorithm, in which performance is represented by a 
function of problem size, can be used successfully with any problem size and on a wide class of 
heterogeneous platforms.  

This publication has emanated from research conducted with the financial support of 
Science Foundation Ireland under Grant Number 08/IN.1/I2054. 
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